SSX 3<sup>rd</sup> Annual Conference (Oct 11, 2018)



# In vitro substrate-dependent inhibition of OATP1B1 and its impact on DDI prediction

Yoshitane Nozaki, PhD

DMPK Tsukuba Eisai Co., Ltd.

hilie

human health care

#### **Organic Anion Transporting Polypeptide (OATP) 1B1**



- OATP1B1 is involved in the hepatic uptake of various anionic drugs (eg. statins, ARBs).
- Clinically-relevant DDIs are caused by inhibition of OATP1B1. Higher exposure to OATP1B1 substrate drugs may lead to severe adverse effects (eg, rhabdomyolysis by statins).

# In vitro OATP1B1 inhibition assay is routinely running in pharmaceutical companies to identify drug candidates with no or low risk of DDI perpetrator.

#### **Risk assessment for DDIs (transporter inhibition)**

### **Static model**



- ✓ Inhibitor concentration assumed to be constant.
- ✓ This model could overestimate DDI risk, but is helpful to avoid false-negative prediction.

### **Dynamic model**



- ✓ Need to develop PK models for substrate and inhibitor.
- More quantitative prediction by considering timeprofiles of substrate and inhibitor conc.
- In both models, K<sub>i</sub> (or IC<sub>50</sub>) value is a key parameter for DDI risk assessment.
- Accurate estimation of K<sub>i</sub> (or IC<sub>50</sub>) values from in vitro experiments is the critical step to achieve quantitative DDI prediction.

#### Variability in reported IC<sub>50</sub> values for OATP1B1

#### **Reported IC<sub>50</sub> values of cyclosporine A (CsA) for OATP1B1**

Shitara and Sugiyama. Pharmacol Ther 177: 67-80 (2017)



- In vitro probe substrates were classified into drug probes (eg, statins) and experimental probes (eg, estrone-3-sulfate).
- In either case, reported  $IC_{50}$  values showed >100-fold variability.

# Outcomes of DDI risk assessment may be affected by large variability in IC<sub>50</sub> values.

### In vitro inhibition assay (uptake transporters)



- Determine uptake of probe substrate in the presence or absence of test article (as inhibitor)
- Calculate IC<sub>50</sub> value from concentration-dependent decrease in transporter-mediated uptake.
- IC<sub>50</sub> approximates K<sub>i</sub> when probe substrate conc. << K<sub>m</sub> (assuming competitive or noncompetitive inhibition).

#### In vitro inhibition assay for uptake transporters



- 1. <u>Substrate-dependent inhibition</u> Inhibitory effect of inhibitors on OATP1B1 greatly varied depending on the probe substrates used for in vitro assay.
- 2. <u>Time-dependent inhibition (pre-incubation effect)</u> By pre-incubating cells with an inhibitor, the inhibitory effect on OATP1B1 could be potentiated.

### Contents

- 1. Substrate-dependent inhibition of OATP1B1 in vitro
- 2. Impact of substrate-dependent K<sub>i</sub> variability on DDI risk assessment with static model
- 3. Fluorescent substrates for OATP1B1
- 4. Time-dependent inhibition of OATP1B1 by cyclosporine A

# Contents

# 1. Substrate-dependent inhibition of OATP1B1 in vitro

- 2. Impact of substrate-dependent K<sub>i</sub> variability on DDI risk assessment with static model
- 3. Fluorescent substrates for OATP1B1
- 4. Time-dependent inhibition of OATP1B1 by cyclosporine A

#### Substrate-dependent inhibition of OATP1B1

#### Inhibitory effect of gemfibrozil (GEM) on OATP1B1 in vitro



| OATP1B1 substrates                                        | OATP1B1 substrates                        |
|-----------------------------------------------------------|-------------------------------------------|
| inhibited by GEM                                          | NOT inhibited by GEM                      |
| Taurocholate<br>Fluvastatin<br>Pravastatin<br>Simvastatin | Estrone-3-sulfate<br>Troglitazone-sulfate |

In vitro inhibitory effect of GEM on OATP1B1 varied greatly, depending on the probe substrates selected.

# "Substrate-dependent Inhibition"

In DDI risk assessment, false-negative prediction should be avoided.
 Probe substrates that can offer lower (conservative) K<sub>i</sub> values should be used in OATP1B1 inhibition assay.

#### Substrate-dependent inhibition of OATP1B1 – Experimental probes –

- Due to the high detection sensitivity and simple quantification, radiolabeled experimental probes have been widely used in in vitro OATP1B1 inhibition assays.
- Three typical experimental probes ( $E_2G$ ,  $E_1S$  and BSP) were tested.



(Radioactivity taken up by cells was quantified by liquid scintillation counting.)

(Compound set that covered a wide range of inhibition potency was selected.)

#### Substrate-dependent inhibition of OATP1B1 – Experimental probes –

#### Comparison of K<sub>i</sub> values of test inhibitors on OATP1B1 between 3 experimental probes

[<sup>3</sup>H]E<sub>2</sub>G vs [<sup>3</sup>H]E<sub>1</sub>S [<sup>3</sup>H]E<sub>2</sub>G vs [<sup>3</sup>H]BSP [<sup>3</sup>H]E<sub>1</sub>S vs [<sup>3</sup>H]BSP 1000 1000 1000 Gemfibrozil-**Erythromycin** Ritonavir 100 100 100 IC<sub>50</sub> (µM), BSP IC<sub>50</sub> (µM), BSP IC<sub>50</sub> (µл), E<sub>1</sub>S Rifampin 10 10 10 ritonavir 0.1 0.1 0.1 0.01 0.01 0.01 100 , op 0.01 1000 0.01 **,**00 1990 1000 0,01 \$ IC<sub>50</sub> (μM), E<sub>1</sub>S IC50 (µM), E2G IC50 (µM), E2G 1, E1S; 2, CsA; 3, BSP; 4, ritonavir; 5, rifampin; 6, tacrolimus; 7, erythromycin; Inhibitors 8, E<sub>2</sub>G; 9, ketoconazole; 10, TCA; 11, verapamil; 12, gemfibrozil; 13, probenecid.

Izumi, Nozaki, et al. Drug Metab Dispos 41: 1859-1866 (2013)

- In some inhibitors (eg, Ritonarir, Gembibrozil, Rifampin), the K<sub>i</sub> values for OATP1B1 varied by 10 ~ 100 fold (117 fold for Ritonavir), depending on the substrates used.
- Of the 3 substrates,  $[{}^{3}H]E_{2}G$  offered the lowest K<sub>i</sub> values for all inhibitors examined.

Use of [<sup>3</sup>H]E<sub>2</sub>G as an in vitro probe may help mitigate the risk of false-negative DDI prediction cased by substrate-dependent K<sub>i</sub> variability.

#### Substrate-dependent inhibition of OATP1B1 – Drug probes –

To further understand substrate-dependency of OATP1B1 inhibition, 12 drug probes - 3 inhibitors combinations were tested.

#### OATP1B substrate drugs

- Pitavastatin (0.1 µmol/L)
   Atorvastatin (0.1 µmol/L)
   Fluvastatin (1 µmol/L)
   Rosuvastatin (1 µmol/L)
  - Pravastatin (10 µmol/L)
  - Repaglinide (0.1 µmol/L)
  - Nateglinide (1 µmol/L)
  - Glibenclamide (0.1 µmol/L)
  - Bosentan (0.1 µmol/L)
  - Valsartan (1 µmol/L)
  - Torasemide (1 µmol/L)
  - Fexofenadine (1 µmol/L)

Substrate conc. < K<sub>m</sub>



#### Substrate-dependent inhibition of OATP1B1 – Drug probes –

Izumi, Nozaki et al. Drug Metab Dispos 43: 235-247 (2015)



- $[^{3}H]E_{1}S$  (typical experimental probe) showed higher K<sub>i</sub> values for 3 inhibitors.
- [<sup>3</sup>H]E<sub>2</sub>G and the majority of drug probes (except for torasemide & nateglinide) gave similar K<sub>i</sub> values (within 3-fold) and covered lower limit of K<sub>i</sub> values range.

In OATP1B1 inhibition assays,  $[^{3}H]E_{2}G$  or drug probes should be used, so that the risk of false-negative DDI prediction potentially cased by substrate-dependent K<sub>i</sub> variability could be reduced.

#### Mechanism of substrate-dependent inhibition of OATP1B1

Mutual inhibition study for  $E_2G$ ,  $E_1S$  and BSP to understand the mode of interaction



|              | Substrate                         |                  |                                     |                                     |                  |                |                   |
|--------------|-----------------------------------|------------------|-------------------------------------|-------------------------------------|------------------|----------------|-------------------|
| Inhibitors   | [³H]E₂G                           |                  |                                     | [³H]E₁S                             |                  | [³H]BSP        |                   |
|              | K <sub>m</sub>                    | V <sub>max</sub> | P <sub>dif</sub>                    | K <sub>m</sub>                      | V <sub>max</sub> | K <sub>m</sub> | V <sub>max</sub>  |
| No inhibitor | 8.17 ± 2.28                       | <b>250</b> ± 89  | -                                   | $\textbf{0.236} \pm \textbf{0.054}$ | 36.4 ± 10.3      | 0.280 ± 0.041  | <b>20.8</b> ± 1.0 |
| E₂G          | -                                 | -                | -                                   | $0.488 \pm 0.072^{*}$               | 35.7 ± 8.3       | 0.361 ± 0.069  | 18.5 ± 1.9        |
| E₁S          | 18.7 ± 2.2**                      | 251 ± 22         | -                                   | -                                   | -                | 4.78 ± 0.65**  | 111 ± 18**        |
| BSP          | $\textbf{5.80} \pm \textbf{2.53}$ | 55.8 ± 24.7**    | $\textbf{0.667} \pm \textbf{0.642}$ | 0.677 ± 0.112*                      | 34.3 ± 11.7      |                | -                 |

\*P<0.05; \*\*P<0.01 compared with parameters determined without any inhibitors

#### Mechanism of substrate-dependent inhibition of OATP1B1

Mutual inhibition study for  $E_2G$ ,  $E_1S$  and BSP to understand the mode of interaction



These findings can not be accounted for by single substrate binding site on OATP1B1

### Contents

# 1. Substrate-dependent inhibition of OATP1B1 in vitro

- 2. Impact of substrate-dependent K<sub>i</sub> variability on DDI risk assessment with static model
- 3. Fluorescent substrates for OATP1B1
- 4. Time-dependent inhibition of OATP1B1 by cyclosporine A

#### **Clinical DDIs with OATP substrate drugs**



Yoshida et al. Annu Rev Pharmacol Toxicol 53: 581-612 (2013)

CsA, RIF and GEM are clinically-relevant OATP inhibitors (AUCR  $\geq \sim 2$ ).

According to the regulatory DDI guidances, R values of CsA, rifampin and gemfibrozil were calculated using their in vitro K<sub>i</sub> values on OATP1B1 obtained from various probes.



# How much R value variability can be produced by substrate-dependent OATP1B1 inhibition?



- R values for CsA and RIF were ≥1.1 regardless of probe substrates. These inhibitors were correctly judged as potential OATP1B1 inhibitors in vivo.
- No impact on DDI risk assessment for strong OATP1B1 inhibitors.



- R values for GEM + GEM-glu were ≥1.1 regardless of probe substrates. However, some substrates (eg, E<sub>1</sub>S and BSP) offered borderline values.
- To avoid potential false-negative prediction for GEM (weak-to-moderate inhibitor), sensitive probes such as E<sub>2</sub>G should be used for in vitro assays.

# Contents

- 1. Substrate-dependent inhibition of OATP1B1 in vitro
- 2. Impact of substrate-dependent K<sub>i</sub> variability on DDI risk assessment with static model
- 3. Fluorescent substrates for OATP1B1
- 4. Time-dependent inhibition of OATP1B1 by cyclosporine A

#### Fluorescence-based OATP1B1 inhibition assay

Fluorescence-based OATP1B1 inhibition assay can offer highly-sensitive, high-throughput method to screen out synthesized compounds with high DDI risk.
 Useful particularly at the early stage of drug development.

Many fluorescent substrates are reported for OATP1B1, however...

- Current issues -

|                                                                  | Fluorescent substrates | Labeled substances | Fluorophore                | Transporters                                                                 | - 🗸 Availability from commercial cources     |  |
|------------------------------------------------------------------|------------------------|--------------------|----------------------------|------------------------------------------------------------------------------|----------------------------------------------|--|
| CDCA-NBDBile acidCA-NBDBile acidDCA-NBDBile acidLCA-NBDBile acid | Bile acid              | NBD <sup>a</sup>   | OATP1B1 / 1B3, rat Oatp(s) | (Need to be synthesized before use)                                          |                                              |  |
|                                                                  | Bile acid              | NBD <sup>a</sup>   | OATP1B1 / 1B3, rat Otap(s) | ✓ Low detection sensitivity                                                  |                                              |  |
|                                                                  | DCA-NBD                | Bile acid          | NBD <sup>a</sup>           | OATP1B1 / 1B3                                                                | (low cellular accumulation and/or low        |  |
|                                                                  | Bile acid              | NBD <sup>a</sup>   | OATP1B1 / 1B3              | fluorescence quantum yield)                                                  |                                              |  |
| omme                                                             | UDCA-NBD               | Bile acid          | NBD <sup>a</sup>           | OATP1B1 / 1B3                                                                | <ul> <li>Potential safety concern</li> </ul> |  |
| lot co                                                           | CGamF Bile acid        | FL <sup>b</sup>    | OATP1B1 / 1B3, rat Oatp(s) | <ul> <li>(anticancer drug analogues)</li> <li>✓ High reagent cost</li> </ul> |                                              |  |
|                                                                  | CLF                    | Bile acid          | FL <sup>b</sup>            | OATP1B1 / 1B3                                                                |                                              |  |
| e                                                                | FMTX                   | Methotrexate       | FL <sup>b</sup>            | OATP1B1 / 1B3                                                                |                                              |  |
| /ailab                                                           | Flutax-2               | Paclitaxel         | $Og^{c}$                   | OATP1B3                                                                      | – Our goal –                                 |  |
| lly av                                                           | FL                     | -                  | FL <sup>b</sup>            | OATP1B1 / 1B3, rat Oatp(s)                                                   |                                              |  |
| ercia                                                            | 8-FcA                  | cAMP               | FL <sup>b</sup>            | OATP1B1/1B3 To find novel OATP                                               | To find novel OATP1B1 fluorescent            |  |
| ūmo                                                              | Fluo-3                 | -                  | Fluo-3                     | OATP1B3                                                                      | substrate(s) that is applicable to in vitro  |  |
|                                                                  | CDCF                   | -                  | CDCF                       | Rat Oatp(s)                                                                  | inition assay systems.                       |  |
| •                                                                | <b>N</b> T' 1          | 1. 1 1 51          | 0                          |                                                                              | =                                            |  |

#### **Reported fluorescent substrates of OATPs**

a: Nitrobenzoxadiazole, b: Fluorescein, c: Oregon green

#### Identification of novel fluorescent substrates of OATP1B1



Following FL and its derivatives were tested to find novel fluorescent substrates of OATP1B1



#### Identification of novel fluorescent substrates of OATP1B1



Uptake of FL and its derivatives in OATP1B1-, OATP1B3- and OATP2B1-HEK293 cells



Izumi, Nozaki et al. Mol. Pharmaceutics 13:438-448 (2016)

OG, DCF, and DBF were newly identified as fluorescent OATP1B1 substrates.
 DCF (dichlorofluorescein) showed the highest OATP1B1-mediated uptake of the FL derivatives examined.

#### **Characterization of DCF as OATP1B1 probe substrate**

Substrate-dependent inhibition

Mutual inhibition between E<sub>2</sub>G and DCF





- DCF and  $E_2G$  provided similar  $K_i$  values for 14 inhibitors.
- DCF and E<sub>2</sub>G competitively inhibited each other, suggesting they share the same binding site on OATP1B1.
- DCF can be used an alternative probe to  $E_2G$ .

Fluorescence-based OATP1B1 inhibition assay with DCF as a probe can be used as a highly-sensitive, high-throughput screening measures at the early stage of drug development.

# Contents

- 1. Substrate-dependent inhibition of OATP1B1 in vitro
- 2. Impact of substrate-dependent K<sub>i</sub> variability on DDI risk assessment with static model
- 3. Fluorescent substrates for OATP1B1
- 4. Time-dependent inhibition of OATP1B1 by cyclosporine A

#### **Time-dependent inhibition of OATP1B1 (Pre-incubation effect)**

Typical study design to investigate time-dependency of transporter inhibition



CsA  $IC_{50} = 0.47 \ \mu M$ (w/o pre-incubation with CsA)  $IC_{50} = 0.021 \ \mu M$   $IC_{50} = 0.021 \ \mu M$ (w/ 1h pre-incubation with CsA)  $IC_{50} = 0.021 \ \mu M$   $IC_{50} = 0.021 \ \mu M$ 

Assuming cis-inhibition, co-incubation of a probe substrate and an inhibitor has been employed in transporter inhibition assay.

By pre-incubating cells with CsA before atorvastatin-CsA co-incubation, inhibitory effect of CsA on OATP1B1 was potentiated.

Amundsen et al. Drug Metab Dispos 38: 1499-1504 (2010)

#### **Time-dependent inhibition of OATP1B1 (Pre-incubation effect)**



Izumi, Nozaki et al. Drug Metab Dispos 43: 235-247 (2015)

By CsA pre-incubation, inhibitory effect of CsA on OATP1B1 was potentiated by 3 to 5 fold regardless of probe substrates.

#### Discrepancy between in vitro and in vivo $IC_{50}$ values of CsA for OATP1B1



#### Inhibitor: CsA

Li et al. Clin Pharmacokinet 53: 659-678 (2014)

In vivo IC<sub>50</sub> values estimated by PBPK modeling were much lower than in vitro IC<sub>50</sub> values.
 By pre-incubating cells with CsA, the in vitro IC<sub>50</sub> values were reduced to 14 ~ 80 nmol/L,

which were similar to in vivo IC<sub>50</sub> values.

# Inhibitor pre-incubation approach can offer conservative (lower) $IC_{50}$ values for OATP1B1, which will be helpful to avoid false-negative DDI prediction and to estimate in vivo $IC_{50}$ values.

#### Proposed mechanism of time-dependent OATP1B1 inhibition by CsA

- CsA inhibits OATP1B1 from both outside (cis-inhibition) and inside (trans-inhibition) of cells.
   Trans-inhibition potency is greater than cis-inhibition.
  - CsA is slowly take up by the cells due to strong intracellular binding.





Pre-incubation time-dependent potentiation of OATP1B1 inhibition by CsA was reproduced by this model.

Shitara and Sugiyama. Pharmacol Ther 177:67-80 (2017)

#### **Time-dependent inhibition of transporters**

|              | Inhib                                                                                                                | itors                                                                                                                     |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
| Transporters | Preincubation effect (time-dependent inhibition)                                                                     |                                                                                                                           |  |  |
|              | Potentiated inhibitory effect<br>(lowered IC <sub>50</sub> values)                                                   | No effect<br>(No change in IC <sub>₅0</sub> values)                                                                       |  |  |
| OATP1B1      | Asunaprevir<br>CsA (and AM1)<br>Dasatinib (weak)<br>Gemfibrozil (weak)<br>Rifampin<br>Ritonavir (weak)<br>Simeprevir | Saquinavir<br>Rifamycin SV<br>Sidenafil<br>Clarithromycin<br>Erythromycin<br>Telmisartan<br>Glibenclamide<br>Ketoconazole |  |  |
| OATP1B3      | Asunaprevir<br>CsA (and AM1)<br>Dasatinib (weak)<br>Rifampin<br>Simeprevir                                           |                                                                                                                           |  |  |
| OAT1         | (Chrysophanol)<br>(Physcion)                                                                                         | Probenecid<br>(Rhein)<br>(Emodin)<br>(Aloe-emodin)                                                                        |  |  |
| OAT3         | (Emodin)<br>(Aloe-emodin)<br>(Chrysophanol)<br>(Physicon)                                                            | Probenecid<br>(Rhein)                                                                                                     |  |  |

- In addition to CsA, some compounds (eg, anti-HCV drugs) showed timedependent inhibition for OATP1B1.
- Time-dependent inhibition is reported for OATP1B3, OAT1 and OAT3.

### Conclusions

The present study focused on substrate- and time-dependent inhibition of OATP1B1 to establish optimal in vitro inhibition assay conditions.

#### Substrate-dependent inhibition of OATP1B1

- >10-fold substrate-dependent K<sub>i</sub> variability observed in some inhibitors.
- $E_2G$  and drug probes (eg, statins) offered lower K<sub>i</sub> values.

#### ■ Impact of substrate-dependent K<sub>i</sub> variation on DDI risk assessment

- CsA, RIF and GEM were judged as potential OATP1B1 inhibitors, which was consistent with clinical findings.
- However, the DDI risk of GEM (a moderate-to-weak inhibitor) could be underestimated due to
  potential K<sub>i</sub> variability. In OATP1B1 inhibition assay, E<sub>2</sub>G or drug probes will be useful to avoid
  false-negative DDI prediction potentially caused by substrate-dependent K<sub>i</sub> variability.

#### Fluorescent substrate for OATP1B1

• Fluorescence-based inhibition assay with a new fluorescence probe substrate DCF will be useful particularly at the early stage of drug development.

#### Time-dependent inhibition of OATP1B1 by CsA

- Inhibitory effect of CsA on OATP1B1 was 3- to 5-fold potentiated by CsA pre-incubation, and the K<sub>i</sub> values obtained after CsA pre-incubation was similar to in vivo K<sub>i</sub> values estimated by PBPK modeling.
- In the future, we may need to address time-dependent inhibition for other transporters.